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E
nzymes, and proteins in general, are
molecules whose function is dynami-
cally coordinated by their complex

energy landscapes. The observation of in-
dividual enzyme molecules enables us to
capture dynamic processes that are buried
in ensemble measurements. It is one of the
ultimate goals of single-molecule experi-
ments to relate a time series of events to
the energy landscape of an enzyme and to
construct a kinetic scheme of the catalytic
reaction.1�5

Single-molecule fluorescence spectros-
copy is particularly well suited to study the
dynamic behavior of enzymes.6,7 A variety
of different fluorescent reporter systems
have been developed to study conforma-
tional changes during the catalytic reaction
cycle or the kinetics of the catalytic reaction
itself. Due to its strong distance sensitivity,
single-molecule Förster resonance energy
transfer (smFRET) is ideal for monitoring
conformational changes on various time
scales.8�10 smFRET has further been used
to indirectly measure the oxidation state of a
cofactor during the catalytic reaction.11,12 Al-
ternatively, if the cofactor is fluorescent itself,
alterations in cofactor fluorescence provide a
direct readout of the catalytic turnover
cycle.13 A different and more general ap-
proach is the use of fluorogenic substrates
that are converted by the enzyme into fluor-
escent product molecules.14�18

In many experiments where the time
sequence of enzymatic turnovers was ana-
lyzed, the data suggested that the catalytic
activity was not constant over time.13�18

This observation was explained by the pres
ence of different enzyme conformations lead-
ing to parallel reaction pathways that are each
characterized by different rate constants for
the catalytic reaction. In such a case the rate
constant for the rate-limiting step might
become a function of time, a phenomenon

called dynamic disorder.19 Dynamic disor-
der has been concluded for different enzymes
and has been discussed to be a general
property of enzymes.
To faithfully identify dynamic disorder in

single-enzyme experiments and to analyze

the underlying process on the energy land-

scape, data sets with a large number of

enzymatic turnovers are required.20,21 Fluo-

rogenic substrates are ideal reporter sys-

tems, as every enzymatic turnover reaction

releases a new fluorescent dye molecule

that can, for example, be detected with a
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ABSTRACT

Using a single-molecule fluorescence approach, the time series of catalytic events of an

enzymatic reaction can be monitored, yielding a sequence of fluorescent “on”- and “off”-

states. An accurate on/off-assignment is complicated by the intrinsic and extrinsic noise in

every single-molecule fluorescence experiment. Using simulated data, the performance of the

most widely employed binning and thresholding approach was systematically compared to

change point analysis. It is shown that the underlying on- and off-histograms as well as the

off-autocorrelation are not necessarily extracted from the “signal'' buried in noise. The shapes

of the on- and off-histograms are affected by artifacts introduced by the analysis procedure

and depend on the signal-to-noise ratio and the overall fluorescence intensity. For

experimental data where the background intensity is not constant over time we consider

change point analysis to be more accurate. When using change point analysis for data of the

enzyme R-chymotrypsin, no characteristics of dynamic disorder was found. In light of these

results, dynamic disorder might not be a general sign of enzymatic reactions.

KEYWORDS: single-molecule fluorescence . enzyme kinetics . change point
analysis . photon arrival time series . dynamic disorder . protein dynamics
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confocal microscope. One of the challenges of fluoro-
genic substrates, however, is the very short residence
time of the fluorescent product molecules in the
confocal volume, resulting in very short fluorescent
on-states. Since the dye is not associated with the
enzyme, it leaves the detection volume quickly after
it has been produced. Short on-states separated by
long off-states are difficult to identify accurately during
subsequent data analysis.
The most frequently used data analysis procedure

relies on binning the data followed by the application
of a threshold that separates the short high-intensity
on-states from the off-states. In a recent systematic
study on quantum dot data it was shown that both the
choice of the bin size and the threshold position have a
large influence on the obtained off-histograms.22 Sta-
tistical methods to identify intensity change points are
an interesting alternative, as they do not require any
subjective input.23�25 So far, change point detection
methods have rarely been applied to experimental
data.10,12,26 We have performed a systematic compar-
ison of the commonly used binning/thresholding
method with change point analysis. We have analyzed
the performance and the limitations of both methods
using simulated single-enzyme time traces with differ-
ent signal-to-noise ratios and different intensity levels.
The analysis results have been compared using the
dwell time histograms of the on- and off-times as well
as the off-time autocorrelation, as dynamic disorder
has so far been linked to a stretched exponential off-
time distribution and the presence of correlations
between consecutive off-times. We have further com-
pared the performance of both methods using experi-
mental data of the enzyme R-chymotrypsin.

RESULTS AND DISCUSSION

Generation of the Simulated Data Sets. To simulate single
enzyme data, we have chosen a kinetic scheme
that can be considered as the simplest Michaelis�
Menten-based scheme capable of producing dynamic
disorder.27 The kinetic scheme shows two conforma-
tions of the enzymewith different rates for the catalytic
reaction (Figure 1). These conformations can intercon-
vert at every step in the enzymatic reaction cycle with
the rate constants R, β, and γ, respectively. To simplify
the scheme,wehave chosen identical rate constants for
the forward and the reverse reactions of the conforma-
tional transitions. Using the Markovian property of the
kinetic scheme, the time series of “on”- and “off”-events
was simulated with a Monte Carlo algorithm for two
sets of rate constants (see SI). In model 1 the rate
constants for the conformational changes were chosen
such that they are similar to the rate constants of
substrate binding at a given substrate concentration
(102�103 s�1) but faster than those of the catalytic
reactions (k2a/k2b ≈ 10 s�1). In model 2 the rate

constants for the conformational transitions (0.5�6 s�1)
are slower than the rate constants for the catalytic
reactions (k2a/k2b ≈ 10 s�1). Overall, the rate constants
for the conformational change differ by a factor of
100�1000 between model 1 and model 2. Model 2 is
adequate to describe a process with dynamic dis-
order, as the rate constants for the conformational
transitions are smaller than any other rate cons-
tant in the kinetic scheme.

The corresponding dwell time histograms as well as
the off-time autocorrelation graphs are shown in Fig-
ure S1. For model 1 the off-histogram shows a max-
imum, and no correlations between the off-times exist.
In contrast, the off-histogram for model 2 appears
slightly concave, and correlations between consecu-
tive off-times are observed. These correlations are
expected for model 2, as the conformational transi-
tions are the slowest process.

In the next step, Poisson statistics were used to
simulate photon arrival time traces (see SI). Poisson
noise is a reasonable assumption for both the off- and
the on-state, although it needs to be considered that
the experimental photon-counting statistics of the on-
state are also influenced by other factors such as dye
blinking, rotation, and diffusion. In this way 16 data sets
with different signal-to-noise ratios (S:N = 1.5, 2.5, 3.5,
or 4.5) and different background intensity levels (2000,
4000, 6000, or 8000 photons/second) were generated.

Analysis of the Data with the Binning/Thresholding Approach.
Binning and thresholding are performed by first bin-
ning the photon arrival time trace to obtain an intensity
time trace (Figure 2). Subsequently, an intensity histo-
gram is constructed and a cutoff value (threshold) is
identified to separate the bins with an intensity above

Figure 1. Kinetic scheme for the enzymatic conversion of a
fluorogenic substrate into a fluorescent product at the
single-molecule level. The scheme describes a typical reac-
tion following Michaelis�Menten kinetics. The first step
resembles substrate binding. Here k1a = κ1a[S] and k2a =
κ2a[S], where κ1a and κ2a are the rate constants of substrate
binding and [S] is the substrate concentration. The second
step corresponds to the chemical conversion of substrate
into product (ES f EP*). The third step (EP* f E∼P*) was
introduced to account for the residence time of the gener-
ated fluorescent product molecule in the detection volume.
Both enzyme conformations (Ea and Eb) are able to catalyze
the reaction, but with different rate constants. They can
interconvert at any state along the reaction pathway with
the rate constantsR, β, and γ, respectively. The stateswithin
the box contain the fluorescent product P* and represent
the “on”-state of the reaction. The other states are consid-
ered as the “off”-state.
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the threshold (“on”-bins) from those with an intensity
below (“off”-bins). Finally, consecutive “on”-bins are
combined to yield an on-time and consecutive “off”-
bins are combined to yield an off-time.

When applied to experimental data, there is no
unique solution to determine the bin size and the
threshold position, and the values are often chosen
arbitrarily. For simulated data the intensity levels of
both the off-state (background) and the on-state
(signal) are known. It is therefore possible to calculate
exactly the off-Poisson and the on-Poisson distribu-
tions underlying the intensity distribution, facilitating a
systematic comparison. Determining these distribu-
tions for different bin sizes can provide a basis for
setting the threshold (Figure 2).

For our analysis we have chosen three different bin
sizes and three different threshold methods. For meth-
ods A and B the threshold was placed at the intensity
value where the calculated background distribution
and the signal distribution intersect. It can be easily
shown that the smallest amount of bins will be as-
signed incorrectly at this threshold position. If the dis-
tributions are not overlapping (i.e., for good S:N ratios),
the threshold can be put at any position between
the two distributions. For method A a correction
was used to prevent the separation of “on”-states
into several shorter ones if their intensity fluctuates
around the threshold value (Figure 2, top right). For
method C the threshold was set at a position ensuring
that less than 5% of the “off”-bins were counted as
“on”-bins. Data sets where signal and noise intensity

distributions were not overlapping have not been
analyzed withmethod C, as this would artificially cause
the detection of 5% false “on”-bins even if the actual
overlap between the histograms yields less than 5%
false “on”-bins.

We observe that both the bin size and the threshold
position have a large influence on the shape of the off-
and the on-histograms (Figure 3a and b). Only with the
smallest bin size of 1 ms is the overall slope of the
underlying off-histogram reproduced, while short off-
times are overestimated, resulting in a deviation from
single-exponential kinetics (see the inset of Figure 3).
The origin of this artifact in the short off-time regime
that might be misinterpreted as a stretched exponen-
tial is explained as follows: fluctuating on-levels are
indeed segmented into several short on- and off-states
depending on the position of the threshold (Figure 2
and SI). The number of off-events in this short time
regime consequently depends on the correction used
to account for on-state intensity fluctuations (cf. meth-
ods A and B in Figure 3b). Likewise, the number of short
on-times is overestimated and depends on the use of
the correction. The result that the threshold segments
on-times into several short on- and off-times is further
supported by the observation that the deviations from
the underlying true histogram become smaller for the
higher S:N ratios (Figure 3c). A similar improvement is
observed when increasing the overall intensity
(Figure 3d). Even for a S:N ratio of 2.5 an increase in
the total number of photons leads to a reduction of
the number of short dwell times. A more detailed

Figure 2. Data analysis with binning and thresholding. The photon arrival time trace is first binned to yield a fluorescence
intensity (number of photons/time) time trace. In order to identify the threshold position, an intensity histogram is
constructed. This histogram is a sum of the Poisson distribution of the background (off-state) and of the signal of the
generated fluorescent dye (on-state). For overlapping histograms the intersection of these Poisson distributions is identified
and the threshold is put at this position (methods A and B). As a noisy on-state might be separated into several on-states, an
“interpeak” correction was further performed in method A: off-states of only one (2 ms) or four (5 ms) bins are not counted
as “off” but instead are treated as part of the on-state (see top right). For method B no such correction was performed. In
method C the threshold was determined such that less than 5% of the “off”-bins are counted as “on”.
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discussion of the performance of the binning/thresh-
olding approach is given in the SI.

The use of the above criteria for choosing the
binning and thresholding parameters (smallest possi-
ble bin size and threshold value at the intersection
between the signal and the background distribution)
eliminates some of the arbitrariness of threshold anal-
ysis. It remains difficult, however, to determine the
threshold position in experimental data because the
underlying intensity levels of the on- and off-states are
not known a priori. Furthermore, even if the smallest
possible bin size is used, binning generally introduces
an artificial time scale, and the shortest on- and off-
times that can be resolved are limited by the bin size
used. Bins flanking the on-states might have an inter-
mediate intensity value as the intensity changes within
the bin. This complicates the analysis even further.

Analysis of the Data with Change Point Analysis. Change
point analysis has the potential to overcome these
limitations.23�25 Change point analysis statistically
evaluates the likelihood for each photon to be an
intensity change point. This is achieved by comparing
the photon statistics before and after each photon.
A photon is assigned to be an intensity change point
based on the following statistical hypothesis test: the
log-likelihood ratio (LLR) of the probability of being a
change point and the probability of not being a change
point is larger than a chosen confidence level. In order
to detect multiple change points in the photon trace,
the above procedure is applied recursively by binary
segmentation at the change point photon. As a result,
change point detection provides the time sequence of
photons where intensity changes are most likely to
occur (see SI for details). The hypothesis test scheme

Figure 3. Analysis of simulated data (model 2) using threshold analysis. The dwell time histograms have been obtained for
both the off-states and the on-states of the enzymatic reaction and compared to the underlying histograms (black line). The
left column shows the intensity distributions including the threshold values, whose positions are indicated by arrows. The
middle and the right columns show the off- and on-histograms, respectively. (a) Bin size dependence for one simulated data
set (S:N = 10 000:4000 photons/s; method A with 2 ms interpeak correction). (b) Different threshold methods for the same
simulateddata set (S:N= 10 000:4000photons/s; 1msbin size). (c) Different S:N ratios analyzedwithmethodA (2ms interpeak
correction; 1ms bin size). (d) Different intensity levels for a S:N ratio of 2.5 analyzedwithmethodA (2ms interpeak correction;
1 ms bin size). Note that in all cases the difference is bigger for the on-histograms than for the off-histograms. For the off-
histograms the main difference is observed for the number of short off-times (inset).
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proposed byWatkins et al.23 is chosen in this work, as it
has performed better practically in identifying change
points in our simulated data even in low S:N cases.
A detailed comparison of the performance of these
methods will be discussed elsewhere.

Change point detection is usually followed by a
clustering algorithm to determine the number of dis-
tinct intensity levels and to assign each of the detected
change point intervals to the appropriate intensity
level. Figure 4a and b exemplify these change point
intervals plotted together with their corresponding
intensities. The clustering of the change point intervals
could be performed by introducing a certain boundary
on the intensity-interval time plane: for the data with
the larger S:N ratio (Figure 4b) one can see approxi-
mately two different peaks thatmight allow the assign-
ment of a plausible boundary. This introduces a
subjective step into the analysis, however. Also in the
case of low S:N ratios (Figure 4a) no clear boundary can
be identified. Here, we therefore introduce a new,
efficient and simple clustering algorithm for the assign-
ment of the “on”- and “off”-levels. This new algorithm
subjects all change point intervals to a second change
point detection step. In this way, also fluctuations in
the background and signal intensity are taken into
account naturally (see SI). The results of the clustering
are indicated by the red and blue colors in Figure 4a
and b. Although not relevant for our data, it should be
noted here that this change point based clustering
algorithm can also be applied to multistate trajectories
in exactly the same way. For multistate trajectories
more than one change point would be identified
separating the intensity levels, allowing for a general-
ization of our approach (see SI for details).

The change point analysis results obtained for all
S:N ratios show that short off-times and short on-times
are underestimated in the respective histograms com-
paredwith theunderlyinghistograms (Figure 4c andd).
For increasing S:N ratios the difference between these
histograms is becoming smaller: for the S:N ratios of
14 000:4000 and 18 000:4000 photons/s both the on-
and the off-histograms match the underlying histo-
grams very well. Similar results are obtained for an
increase in the intensity levels (Figure 4e and f). This
result implies that a minimum number of photons is
required to identify a change in the intensity level with
a sufficient statistical significance. Short on- and off-
timeswith a small number of photons have a chance to
be missed with change point analysis.

When comparing the results obtained with the
binning/thresholding and the change point anal-
ysis method, it is evident that both methods per-
form almost equally well for high S:N ratios such as
14 000:4000 photons/s (cf. Figure 3c and Figure 4c). For
lower S:N ratios the number of short on- and off-times
becomes inaccurate, as the number of photons is too
small. The inaccuracies in the short dwell time regime

have a different sign in the deviation: while the thresh-
old approach overestimates the number of short dwell
times, the change point analysis underestimates it. This
result is further supported by the results obtained for
model 1, where threshold analysis fails completely in
determining themaximum in the off-histogram (Figure
S4). The accuracy of bothmethods can be improved by
increasing the overall number of photons.

In addition to the dwell time histograms, correla-
tions between consecutive off-times are an important
characteristic of dynamic disorder. Figure 5 shows the
autocorrelations for several data sets. Independent of
the data analysis method, the estimated correlations
are always lower than the underlying ones. Data
sets with higher S:N ratios show slightly stronger
correlations, but even for the largest S:N ratio (e.g.,
36 000:8000 photons/s) the estimated correlations
are only about half compared to the underlying ones.
By taking into account the frequent occurrence of
false-positive events (incorrectly assigned “on”) and
false-negative events (incorrectly assigned “off”) deter-
mined with both methods (Table S4), the loss of
correlations is an expected result. Despite the
underestimated correlation strength, the number
of correlated events captured is similar to those of
the underlying autocorrelation. Most importantly, as
correlations between turnovers are only observed
for model 2 and not for model 1 (not shown here), it
can be concluded that both data analysis proce-
dures only reduced the extent of the correlations but
did not introduce artificial ones in the simulated data
sets.

Analysis of Experimental Data from the Enzyme r-Chymo-
trypsin. Having established the best parameters for the
two respective data analysis methods, we have applied
them to analyze a photon arrival time trace recorded
for the enzymeR-chymotrypsin. This time trace is 1000 s
long and has a S:N ratio of approximately 2.5 estimated
from the average “on” and “off” intensities from both
the thresholding and change point analyses. The max-
imum of the noise intensity distribution is located
around 3500 photons/s. This falls into the parameter
range where the accurate separation of on- and off-
times is most difficult.

The analysis of the experimental data is compli-
cated by the fact that the on-level is not purely Poisson
distributed. Processes such as dye blinking contribute
to the signal, and the number of photons might
decrease gradually when the dye leaves the detection
volume by diffusion. In addition, the background
intensity might fluctuate and also increase with time
as fluorescent dye molecules are produced by the
enzymatic reaction. As a result, no constant threshold
can be applied to the complete time trace. Instead
the time trace needs to be analyzed in fragments.
Here, intervals of 3 s were chosen to be able to
apply threshold method A (2 ms interpeak time).
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We obtained 25 556 enzymatic turnovers with Ætoffæ =
0.038 s and Ætonæ = 0.0015 s. The off-histogram has a
very similar overall shape to the histogram obtained
for the simulated data and shows a large number of
short off-times (Figure 6). Using change point ana-
lysis the total number of enzymatic turnovers was
13 761 with Ætoffæ = 0.069 s and Ætonæ = 0.0033 s. Now
the off-histogram shows a very small number of
short off-times with a maximum just as observed for
the simulated data sets (Figure 4). The on-time histo-
gram obtained with threshold analysis shows a smaller
number of long on-times, resulting from the segmen-
tation of on-times by the threshold (Figure 6). This
artificial segmentation of the on-times is further

highlighted in the autocorrelation analysis. No correla-
tions are seen for the off-times determined with

change point analysis, whereas the threshold method

yields correlations in the short off-time region, as can

be seen in the 2D-correlation plots (insets in Figure 6).

Correlations between subsequent off-times as visua-

lized in these 2D-correlation plots have been observed

for other enzymes and have been considered as the

most relevant proof for the existence of dynamic

disorder.13 Clearly, for R-chymotrypsin the observed

correlations are artificially introduced and are directly

related to the overrepresentation of short off-times

when using threshold analysis.

Figure 4. Analysis of simulated data (model 2) using change point analysis. On the left the durations of the change point
intervals are plotted vs their intensity for two different data sets: (a) 6000:4000 photons/s and (b) 18 000:4000 photons/s. The
blue and red data points represent on-states and off-states, respectively. Themiddle and the right columns show the off- and
on-histograms. The analysis has beenperformed for different S:N ratios (c, d) anddifferent intensity levels (e, f). Theblack lines
represent the underlying histograms.

Figure 5. Off-time autocorrelation (simulated data: model 2). The autocorrelation of the off-times was determined for off-
times obtained with threshold analysis (a) and with change point analysis (b) and compared with the underlying
autocorrelation (black line). Autocorrelations are shown for two different S:N ratios and intensity levels.
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The observation that threshold analysis introduces
artifical correlations when analyzing experimental data
appears to be inconsistent with the autocorrelation
results obtained for the simulated data sets of model 1,
where no artifical correlations were introduced by the
threshold method. This apparent discrepancy most
likely results from the fact that the experimental on-
states show much more fluctuations than the simu-
lated data. Consequently, more and different errors are
made in determining the presence and the duration of
the on-states.

On the basis of the results obtained for both the
simulated and the experimental data sets, we conclude
that change point analysis is more accurate even when
the S:N ratio is high enough to “lift” any overlap
between the signal and the background intensity
distributions. The following aspects support this con-
clusion: (i) the on-histograms are generally much
better reproduced with change point analysis, as no
binning is required; (ii) the overall number of events
detected as false “on” or false “off” is smaller with
change point analysis (Table S4); (iii) for experimental
data, it is difficult to accurately determine the intersec-
tion value that is needed for threshold analysis; (iv) the
on-state in experimental data might fluctuate much
more than in our simulated data set; and (v) the
diffusion of the fluorophore when leaving the confocal
volume leads to a gradual rather than an instantaneous
decrease in the intensity as we assumed for the
simulated data. Although the latter two experimental
complications lead to deviations fromPoisson statistics
in the on-state, we have not observed any negative
influence on the performance of change point analysis.

Not only just comparing the results from a metho-
dological point of view but also looking into their
biological relevance, we observe that the shapes of
the dwell time histograms obtained with the different
methods are different. This affects the conclusions
drawn from these histograms about the number of
exponentials in the underlying kinetics. The concave
shape of the off-histogram as obtained with threshold
analysis has frequently been fitted with a stretched

exponential and interpreted as one of the most im-
portant hallmarks of dynamic disorder. On the basis of
the results presented here, this interpretation should
be reconsidered as a possible artifact of the data
analysis procedure. It should be noted that it is gen-
erally difficult to accurately determine the number of
exponentials underlying the histograms if the number
of exponentials needed for the fit is more than 3.
Further, many different kinetic schemes can yield very
similar histograms so that only little information about
the rate constants can be obtained from fitting dwell
time histograms.28,29 This has recently been exempli-
fied for kinetic schemes that contain a mixture of
sequential and parallel steps along the reaction
pathway.29

Correlations between consecutive off-times repre-
sent another characteristic of dynamic disorder, and it
has been shown that the calculation of the autocorre-
lation of the off-times can already yield a clear indica-
tion for a rather small number of turnovers (>250).20

As shown here, correlations may be introduced artifi-
cially by threshold analysis, however. For R-chymo-
trypsin it is clear that the correlations observed were
artificially introduced by the threshold method. Con-
sequently, the correlations seen for other enzymes
may need to be revised critically, although no clear
conclusions can be drawn yet.

Under our experimental conditions no indication
can be found for the presence of dynamic disorder,
which has been previously attributed to a stretched
exponential off-histogram and off-time correlations.
This does not exclude the existence of parallel reaction
pathways (Figure 1) and the occurrence of conforma-
tional changes during an enzymatic reaction, however.
The dwell time histograms might just not be the
appropriate representation to describe dynamical pro-
cesses especially if sequential and parallel steps occur
in a given kinetic scheme.29 More experiments with
R-chymotrypsin and other enzymes are needed to
answer the question if and how dynamic disorder
contributes to enzymatic reactions and what will be
the best experimental approach to detect it. Better S:N

Figure 6. Analysis results for experimental data of the enzyme R-chymotrypsin. The time trace was analyzed with both
threshold analysis (T, blue; 1ms bin time, thresholdmethod A, 2ms interpeak correction) and change point analysis (CP, red).
The off-time histograms show significant differences between the two analysis methods mostly in the short off-time region.
Also the on-time histograms deviate from each other. Correlations are observed in the autocorrelation graph obtained with
the threshold method. A 2D correlation graph indicates that these correlations are caused by the short off-times (inset;
duration of the iþ1th off-time plotted against the ith off-time with the correction f(i, iþ1)� f(i)f(iþ1); the time scale on both
axes ranges from 0 to 40 ms).
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ratios would greatly improve the accuracy of determin-
ing the on- and off-times, but can hardly be achieved
with current fluorescent reporter systems and standard
confocal microscope setups. New developments in
both of these areas are required until a more systema-
tic analysis will become feasible.

CONCLUSION

We have systematically analyzed simulated photon
arrival time traces with the goal to identify the best
method for extracting the on- and off-times of a single-
molecule enzymatic reaction. For both methods the
S:N ratio should be at least 2.5 and the background
intensity level should be at least 4000 photons/s, as a
minimum number of photons is required to reproduce
the underlying true histograms accurately. For experi-
mental data where the signal and background levels as

well as the duration of the on-states are not known,
change point analysis is more appropriate. Change
point analysis of the data measured for the enzyme
R-chymotrypsin does not yield a typical stretched
exponential, and no correlations between consecutive
off-times are seen. To draw conclusions about the
presence of dynamic disorder from single-enzyme
experiments, better data are required and higher order
correlations need to be consideredwhen analyzing the
data. Besides enzymatic turnovers, change point anal-
ysis is also applicable to other systems, characterized
by a sequence of “on”- and “off”-states such as quan-
tum dots, ion channels, and carbon nanotube field
effect transistors. Ultimately, it can also be used for
trajectories with more than two states, making it a
generic and objective procedure for a broad range of
applications.

METHODS

Single-Molecule Measurements of r-Chymotrypsin. Single turn-
overs of the enzyme R-chymotrypsin were monitored with
a confocal microscope setup as described by De Cremer et al.18

R-Chymotrypsin hydrolyzes the fluorogenic substrate analogue
(suc-AAPF)2-rhodamine 110 in a two-step reaction, yielding the
highly fluorescent dye rhodamine 110 as the final product.30

Enzymes were immobilized in an agarose matrix on a clean
glass coverslip by spin coating a solution of 0.05 nMenzyme and
1% (w/v) agarose in MQ water at 30 �C. Immediately after spin
coating, the coverslip was placed in a sample holder and 1mL of
PBS (0.01 M phosphate pH 7.4, 138 mM NaCl, 2.7 mM KCl) was
added on top of the coverslip. In order to localize individual
enzyme molecules on the coverslip, the enzymes had been
labeled with NHS-carboxyfluorescein (Invitrogen, mixed iso-
mers; degree of labeling: 2 dyes/enzyme).

Utilizing the piezoelectric translation stage (Physik Instru-
mente) of the confocal microscope the surface was scanned to
obtain an image of the fluorescence intensity at each position of
the sample. Individual fluorescently labeled enzymes were
visible as bright spots in the scanned images. After positioning
the confocal spot at the position of an enzyme, the catalytic
reaction was started by adding 1mL of PBS containing 60 μMof
the fluorogenic substrate analogue (30 μM final concentration).

Photon arrival time series of the enzymatic turnovers were
recorded as described by Vosch et al.31 Briefly, the sample was
excited with 488 nmpulsed laser light (8.13MHz repetition rate)
from a Ti;sapphire laser (Tsunami, Spectra Physics). The excita-
tion beam was focused through an oil immersion objective
(Zeiss, 1.3 N.A., 100�) of an inverted microscope (Olympus
IX70). The excitation power at the entrance port of the micro-
scope was adjusted from 1 to 10 μW. Fluorescence was col-
lected by the same objective, filtered by a band-pass 520/40
filter, and focused via a 100 μm pinhole onto an avalanche
photodiode (SPCM-AQR-15, PerkinElmer). Photon arrival times
were registered using a time-correlated single-photon counting
computer card (Becker&Hickl GmbH, SPC 630).

Data Analysis with Binning and Thresholding. The data were
binned with a bin size of 1 ms and subsequently analyzed with
threshold method A (interpeak correction of 2 ms). For experi-
mental data the background intensity increases over time
because fluorescent product molecules accumulate as a result
of the enzymatic and autohydrolysis of the substrate. A constant
background as used for the simulated data is therefore not
applicable for the analysis of experimental data. To facilitate the
analysis, the time trace was separated into constant intervals of
3 s, and for every interval a new threshold value was calculated.
This interval size is short enough to account for the nonconstant

background intensity and long enough to build the intensity
histograms. It should be noted that even with this procedure
the intersection between the signal and background intensity
distributions was very difficult to determine, as the distributions
hardly showed any separation at all.

Data Analysis with Change Point Analysis. Before detecting the
intensity change points of the experimental photon arrival
trace, negative interphoton times (ith photon is detected by
the avalanche photodiode (APD) before the (i�1)th) were
removed. Photons having a microtime smaller than the micro-
time of the instrument response functionwere removed aswell.
Subsequently, change point analysis was performed as de-
scribed in the SI (2.3).
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